If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-14z-42z^2=0
a = -42; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·(-42)·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*-42}=\frac{0}{-84} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*-42}=\frac{28}{-84} =-1/3 $
| 2x+5x=1/1/3 | | 2x+5x=11/3 | | 106+a=123 | | 30n+100=20n+140 | | 6x+30=-54 | | 6x-4=4(x-5) | | Y+85=435+x | | -7+9w=6w-7 | | 15x=182 | | X+y=435 | | 1.37w=7 | | Y=x(100)^-1 | | 4x+1=3x÷3 | | 4n+6=-59 | | -3=4x+14 | | 183-v=51 | | 5x-21=-76 | | -5x+-1=19 | | -w+201=109 | | −4x^2+8x−2=0 | | -5(x)=x^2+3x-21 | | 5a-5=11-3a | | 25+x2=125 | | 31.1=b/7 | | 100+44=x2 | | −6z=72z= | | -2x-6=9+0.75(-16+8) | | C+100=55;c= | | 0.85x=776.10 | | m-32=15 | | 10x+2=15+27 | | 2x+1/4-1/4x=3 |